01 Oct 2019

New DFG project on 'Media Sentiment'

The computational humanities group starts a new DFG project on media sentiment in historic financial newspapers.

More than a Feeling: Media Sentiment as a Mirror of Investors’ Expectations at the Berlin Stock Exchange, 1872-1930

Together with colleagues from Economic and Social History (Regensburg University), we will start a DFG project in October 2019. The project is part of the DFG Priority Program “SPP 1859 – Experience and Expectation”. As the newest member of the Computational Humanities Group, Bernhard Liebl will carry out the computational aspects of the project together with Manuel Burghardt. Welcome to Leipzig Bernhard!

Project description

Investors’ behaviour is not only influenced by information on fundamentals, such as future cash flows, but also by soft parameters, such as moods, emotions, or feelings. Accordingly, stock returns and trading volume are only partially determined by fundamentals. Recently, the notion of “investor sentiment” has attracted the attention of scholars in finance and financial economics. Although the understanding of the nature of sentiment is still far from being complete, there is considerable empirical evidence that sentiment plays a crucial role for financial markets. In this project, we follow the idea that sentiment is a belief about future developments that is not built upon facts and rational reasoning. Accordingly, sentiment can be regarded as being equivalent to investors’ (non-fundamental) expectations. In this project, we aim to investigate the influence of sentiment for the case of the Berlin stock exchange between 1872 and 1930. We will use different computational sentiment analysis techniques (dictionaries, machine learning) to automatically extract sentiment from a daily column in the Berliner Börsen-Zeitung, which was the most important financial newspaper at the time. We will create a daily sentiment index which can be used to measure investors’ expectations as defined above. In combination with content analysis methods, such as topic modelling and stock market data, we will investigate the impact of expectations and the accompanying narratives on the Berlin stock market, both quantitatively and qualitatively. As we will apply different text mining methods on a large scale, we build this project on an interdisciplinary cooperation between economic history and digital humanities to address the following questions: How did historical experiences, such as wars and political or economic shocks, change investor sentiment, i.e. investors’ expectations, and how did sentiment influence financial markets? Has this influence changed over time? Which role did sentiment play in the development of financial and economic crises, and which were the narratives that accompanied high stock market fluctuations? Hence, our project aims to contribute directly to the priority programme’s three central questions.


For more information about the project please contact Manuel Burghardt.